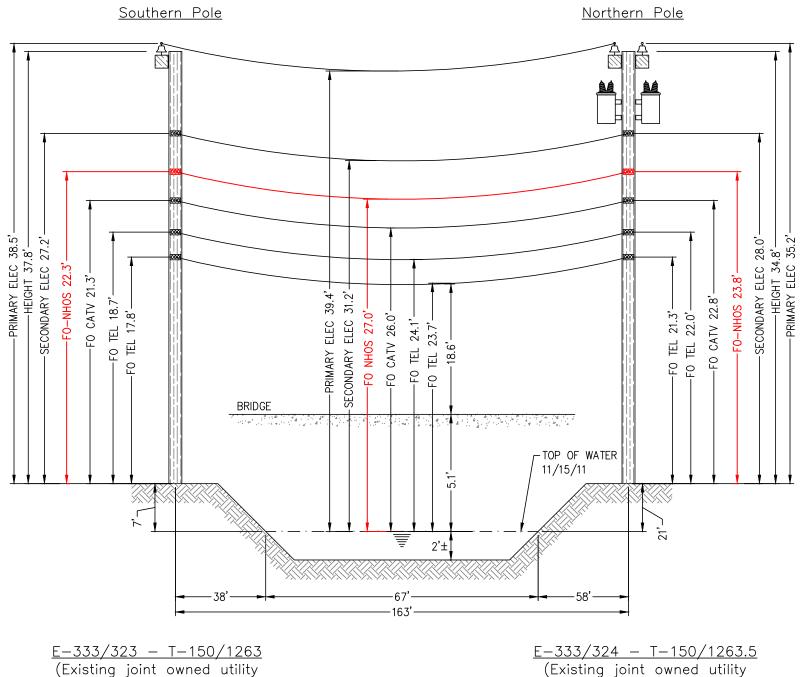


Spanmaster ® Release 3.1 Sag / Tension Computations 09/01/11 Waveguide


Waveguide River and Rail Crossings

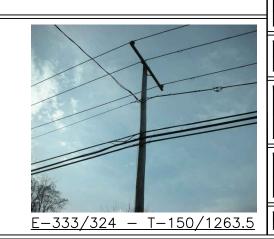
Selected Cables	X-SECT AREA (sq.in)	EFF MODULUS (psi)	NOMINAL DIAM (in)	EFF.EXP. COEFF. (1/F)	CABLE WEIGHT (lb/ft)	E*A LOAD BEARING CAPACITY (lbs)	MAX. RATED LOAD (lbs)
1/4"6.6mEHS ORF-O-288-LN	0.0352 0.5782	2.60E+07 2.70E+05	0.250 0.858	5.60E-06 1.13E-05	0.1210 0.1960		6650 651
Bundle			1.108		0.3170		

NESC RESULTS

Loading Condition	Temp. (F)	lce Load lb/ft	Ice Thick in	Wind Constant Ib/ft	Horz Wind Load lb/sq ft	Result Load + Const lb/ft	Sag ft	Tension	% Len Chg From Input Conditions	Sag @ Point 81.5 ft	Horz Sag Comp ft	Vert Sag Comp ft	Vector Angle Deg
Rule 251 - Heavy	0.0	1.000	.50	.3	4.0	1.793	3.34	1781	0.09	3.34	1.57	2.94	28.1
232A1	120.0	0.000	.00	.0	0.0	0.317	2.02	521	0.01	2.02	0.00	2.02	0.0

	Temp	Midspan	Tension	% Length	Clearance
Span Length = 163.00 ft	(F)	Sag (ft)	(lb)	Change	Ologidilo
Span Sag = 1.63 ft (19.6 in)	()	3 ()	()		
Span Tension = 646 lb	-40.0	1.00	1,055	-0.02	N/A
Max Load = 6,650 lb	-30.0	1.04	1,012	-0.02	N/A
Usable load (60%) = 3,990 lb	-20.0	1.08	970	-0.01	N/A
Catenary Length = 163.043 ft	-10.0	1.13	928	-0.01	N/A
Stress Free Length @	.0	1.18	888	-0.01	N/A
Installed Temperature = 162.928 ft	10.0	1.24	849	-0.01	N/A
	20.0	1.30	811	-0.01	N/A
Unloaded Strand	30.0	1.36	775	-0.01	N/A
Sag = .86 ft (10.3 in) 0.53 %	40.0	1.42	740	-0.01	N/A
Tension = 469 lb	50.0	1.49	707	0.00	N/A
	60.0	1.56	675	0.00	N/A
	70.0	1.63	645	0.00	N/A
	80.0	1.70	617	0.00	N/A
	90.0	1.78	590	0.01	N/A
	100.0	1.86	566	0.01	N/A
	110.0	1.94	542	0.01	N/A
	120.0	2.02	521	0.01	N/A
	130.0	2.10	500	0.02	N/A
	140.0	2.10	100	0.02	NI/A

Existing joint owned utility pole (PSNH/Fairpoint) in existing Right—of—Way)


E-333/324 - T-150/1263.5 (Existing joint owned utility pole (PSNH/Fairpoint) in existing Right-of-Way)

E-333/323 - T-150/1263

Construction Notes:

NHOS proposes to install a ¼ inch metal supporting strand between the existing utility poles shown above that will traverse the river. The strand will be installed at the proposed height (see above). The supporting strand will be secured to each pole using double dead end attachments to prevent any sag in the wire and maintain proper clearances. NHOS will lash a one inch diameter fiber optic cable (PVC jacket) to the strand using a dual lash method to provide security of the fiber over the right of way. The fiber will be tagged with twenty four hour contact information at each pole clamp. NHOS will employ the proper safety personnel during the crossing installation. The proposed install will meet all proper clearances from other Utilities. (see above). Additional pole guys will be added per NESC Rule 264 and as directed by pole

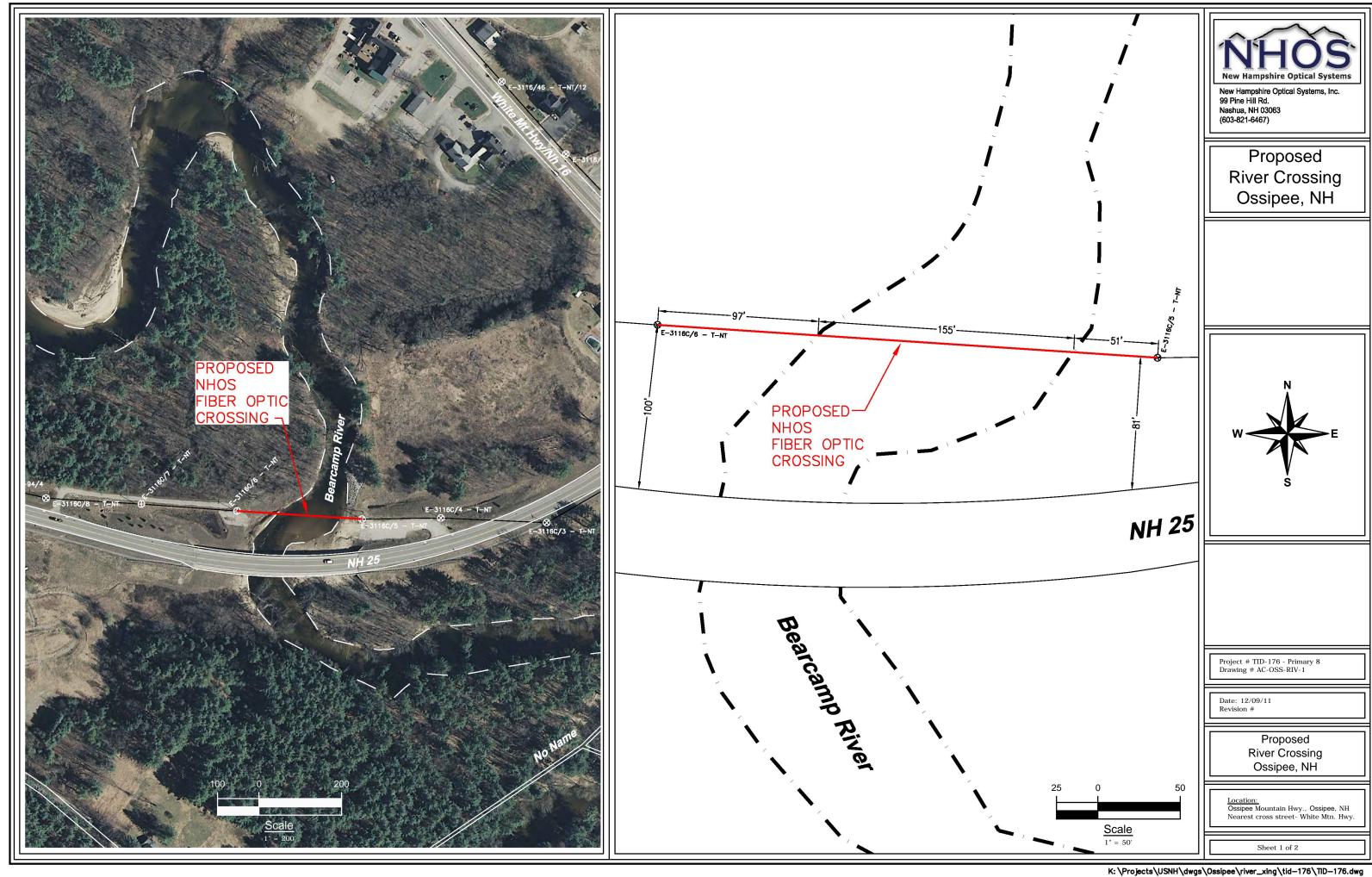
New Hampshire Optical Systems

New Hampshire Optical Systems, Inc. 99 Pine Hill Rd. Nashua, NH 03063 (603-821-6467)

Proposed River Crossing Albany, NH

Notes:

- The heights of structures shown hereon are based on field measurements taken with a Nikon 362 total station during a site survey on 11/15/11
- The horizontal distance between the nearest bridge edge and the existing overhead wires ranges from 28' to 31'.
- The smallest vertical distance from the top of existing bridge deck to the lowest existing overhead wires is 18.6'.
- The vertical distance between the top of water and bridge deck is approximately 5.1'.
- The waterway is classified as unsuitable for sail boating and per NESC Table 232-1 a vertical clearance of 14' must be maintained between the lowest conductor and 10 year floodplain.
- Based on the FEMA Flood Insurance Rate Map for Carroll County Map Number (33003C0335D) dated April 29, 2011 there is currently no flood data available for this area.
- Vertical distances are representative of attachment heights after utility make ready moves are completed.


Project # TID-172 - Primary 8 Drawing # AC-ALB-RIV-1

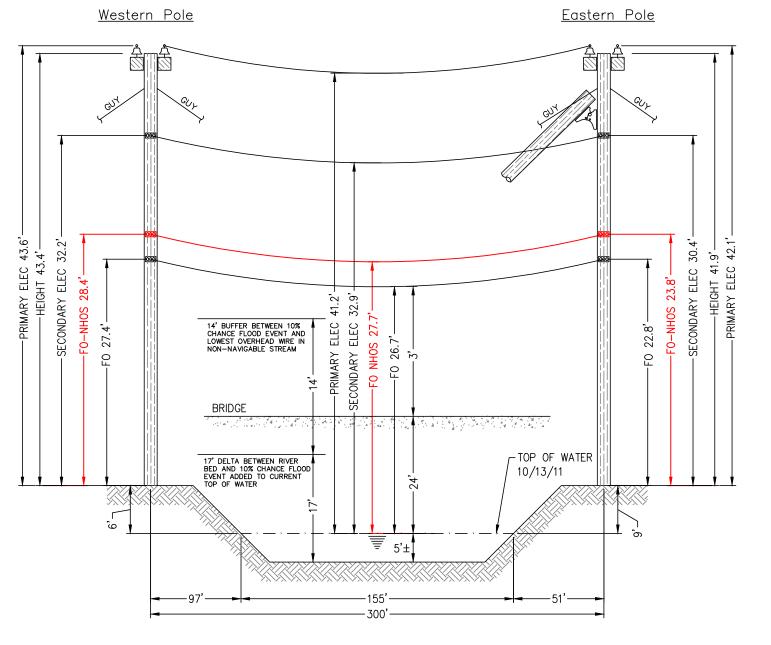
Revision #

Proposed River Crossing Albany, NH

Location:
New Hampshire 113, Albany, NH
Nearest cross street- White Mtn. Hwy

Sheet 2 of 2

Spanmaster ® Release 3.1 Sag / Tension Computations 09/01/11 Waveguide


Waveguide River and Rail Crossings

						E*A LOAD	MAX.	
	X-SECT	EFF	NOMINAL	EFF.EXP.	CABLE	BEARING	RATED	
	AREA	MODULUS	DIAM	COEFF.	WEIGHT	CAPACITY	LOAD	
Selected Cables	(sq.in)	(psi)	(in)	(1/F)	(lb/ft)	(lbs)	(lbs)	
1/4"6.6mEHS	0.0352	2.60E+07	0.250	5.60E-06	0.1210	914940	6650	
ORF-O-288-LN	0.5782	2.70E+05	0.858	1.13E-05	0.1960	155982	651	
Bundle			1.108		0.3170			

NESC RESULTS

					Horz	Result			% Len	Sag @	Horz	Vert	
Loading		Ice	Ice	Wind	Wind	Load	Sag	Tension	Chg From	Point	Sag	Sag	Vector
Condition	Temp.	Load	Thick	Constant	Load	+ Const			Input	150	Comp	Comp	Angle
	(F)	lb/ft	in	lb/ft	lb/sq ft	lb/ft	ft	lb	Conditions	ft	ft	ft	Deg
Rule 251 - Heavy	0.0	1.000	.50	.3	4.0	1.793	7.32	2749	0.13	7.34	3.44	6.45	28.1
232A1	120.0	0.000	.00	.0	0.0	0.317	3.50	1018	0.01	3.50	0.00	3.50	0.0

02, ()	12010 01000 100	.0 0.0	0.017 0.00		0.01		0 0.00 0.0
			Temp	Midspan	Tension	% Length	Clearance
Span Ler	ngth = 300.00 ft		(F)	Sag (ft)	(lb)	Change	
	g = 3.00 ft (36.0 in)						
	nsion = 1,189 lb		-40.0	2.18	1,632	-0.01	N/A
	x Load = 6,650 lb		-30.0	2.24	1,589	-0.01	N/A
	Jsable load (60%) = 3,990	lb	-20.0	2.30	1,545	-0.01	N/A
	Length = 300.080 ft		-10.0	2.37	1,503	-0.01	N/A
	ree Length @		.0	2.43	1,461	-0.01	N/A
Instal	lled Temperature = 299.69	1 ft	10.0	2.51	1,419	-0.01	N/A
			20.0	2.58	1,378	-0.01	N/A
Unloaded			30.0	2.66	1,338	-0.01	N/A
	: 1.37 ft (16.4 in) 0.46 %		40.0	2.74	1,299	0.00	N/A
Tensio	on = 995 lb		50.0	2.82	1,261	0.00	N/A
			60.0	2.91	1,223	0.00	N/A
			70.0	3.00	1,186	0.00	N/A
			80.0	3.09	1,151	0.00	N/A
			90.0	3.19	1,116	0.00	N/A
			100.0	3.29	1,082	0.01	N/A
			110.0	3.39	1,050	0.01	N/A
			120.0	3.50	1,018	0.01	N/A
			130.0	3.60	988	0.01	N/A
			140.0	3.71	959	0.01	N/A

E-3116C/6 - T-NT (Existing joint owned utility pole (PSNH/Fairpoint) in existing Right-of-Way) E-3116C/5 - T-NT (Existing joint owned utility pole (PSNH/Fairpoint) in existing Right-of-Way)

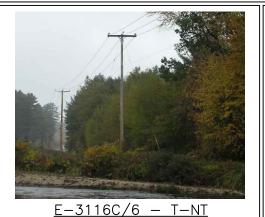
New Hampshire Optical Systems, Inc. 99 Pine Hill Rd. Nashua, NH 03063 (603-821-6467)

Proposed River Crossing Ossipee, NH

Notes:

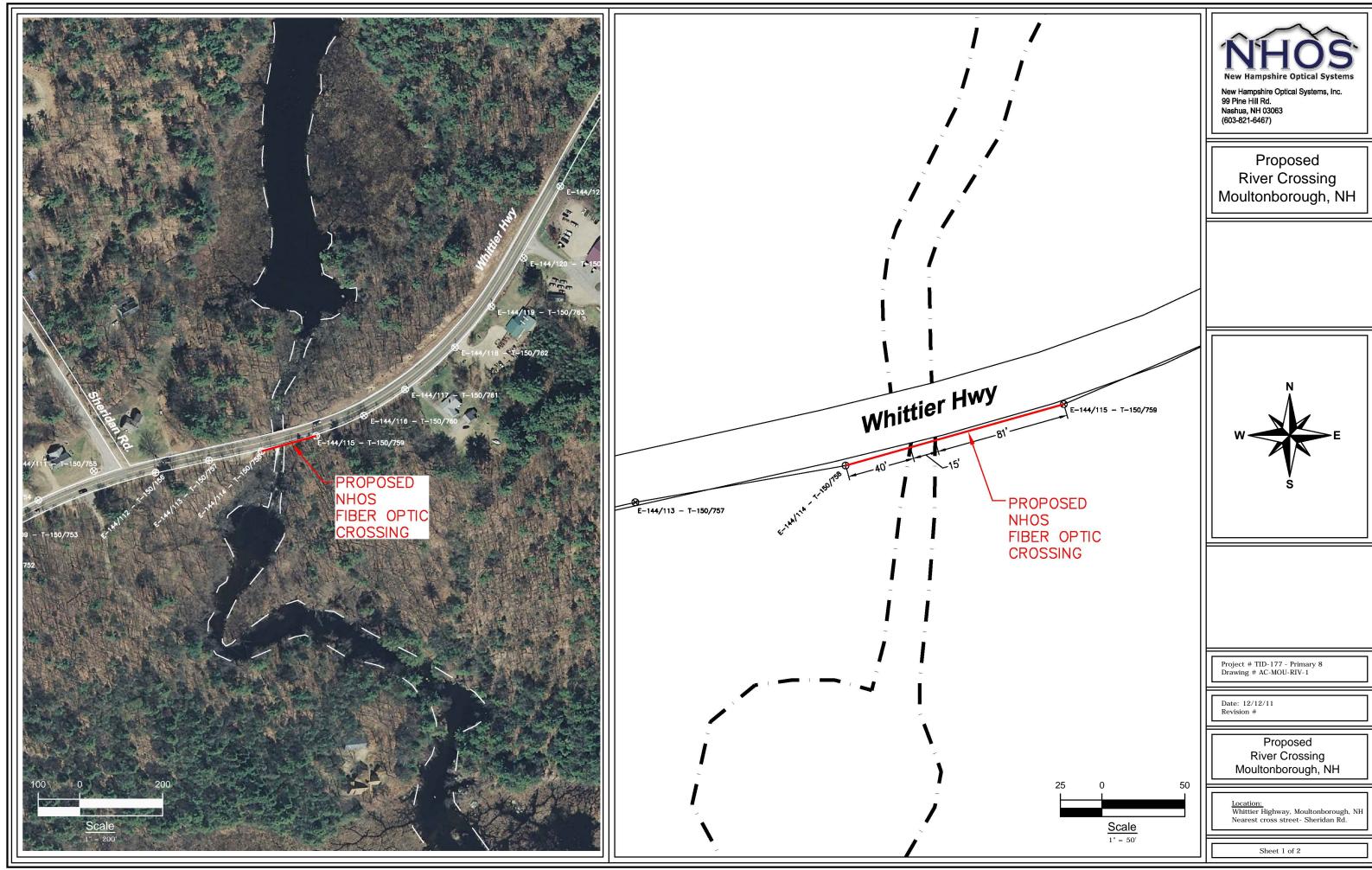
- The heights of structures shown hereon are based on field measurements taken with a Nikon 362 total station during a site survey on 10/13/11.
- The horizontal distance between the nearest bridge edge and the existing overhead wires ranges from 81' to 100'.
- The smallest vertical distance from the top of existing bridge deck to the lowest existing overhead wires is approximately 3'.
- The vertical distance between the top of water and bridge deck is approximately 24'.
- The waterway is classified as unsuitable for sail boating and per NESC Table 232-1 a vertical clearance of 14' must be maintained between the lowest conductor and 10 year floodplain.
- 6. Based on the FEMA Flood Profile for the Bearcamp River (Page 09P) and the Flood Insurance Rate Map for Carroll County, (Map Number 3300160006B) dated June 17, 1991 the delta between the river bed and the 10 year flood elevation is 17.5'. A 14' buffer (for non-navigable streams) was added to that to confirm minimum clearance requirements.
- 7. Vertical distances are representative of attachment heights after utility make ready moves are completed.

Project # TID-176 - Primary 8 Drawing # AC-OSS-RIV-1


Date: 12/09 Revision #

> Proposed River Crossing Ossipee, NH

Location: Ossipee Mou

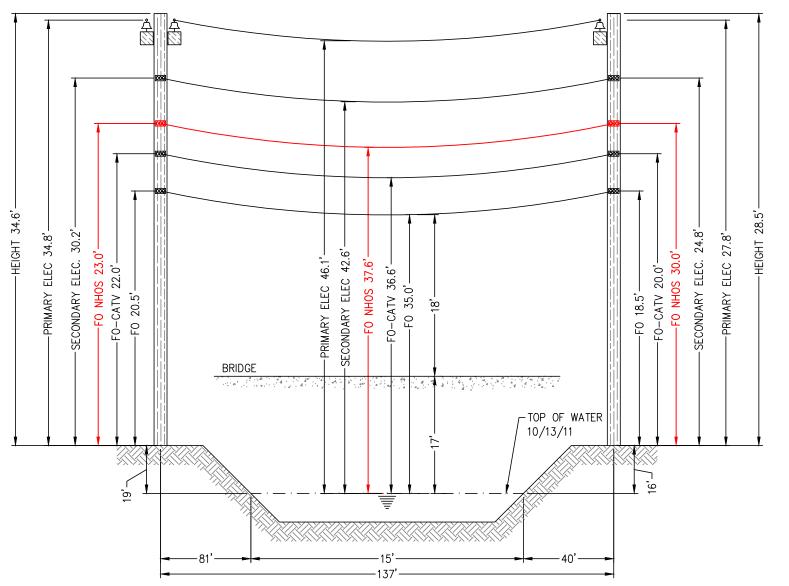

Ossipee Mountain Hwy., Ossipee, NH Nearest cross street- White Mtn. Hwy

Sheet 2 of 2

Construction Notes:

NHOS proposes to install a ¼ inch metal supporting strand between the existing utility poles shown above that will traverse the river. The strand will be installed at the proposed height (see above). The supporting strand will be secured to each pole using double dead end attachments to prevent any sag in the wire and maintain proper clearances. NHOS will lash a one inch diameter fiber optic cable (PVC jacket) to the strand using a dual lash method to provide security of the fiber over the right of way. The fiber will be tagged with twenty four hour contact information at each pole clamp. NHOS will employ the proper safety personnel during the crossing installation. The proposed install will meet all proper clearances from other Utilities. (see above). Additional pole guys will be added per NESC Rule 264 and as directed by pole

Spanmaster ® Release 3.1 Sag / Tension Computations


	X-SECT AREA	EFF MODULUS	NOMINAL DIAM	EFF.EXP. COEFF.	CABLE WEIGHT	E*A LOAD BEARING CAPACITY	MAX. RATED LOAD
Selected Cables	(sq.in)	(psi)	(in)	(1/F)	(lb/ft)	(lbs)	(lbs)
1/4"6.6mEHS	0.0352	2.60E+07	0.250	5.60E-06	0.1210	914940	6650
ORF-O-288-LN	0.5782	2.70E+05	0.858	1.13E-05	0.1960	155982	651
Dundle			1 100		0.2470		

Waveguide River and Rail Crossings

NESC RESULTS

Loading Condition	Temp.	Ice Load Ib/ft	Ice Thick in	Wind Constant lb/ft	Wind Load lb/sq ft	Load + Const lb/ft	Sag	Tension	% Len Chg From Input Conditions	Sag @ Point 68.5	Sag Comp	Sag Comp	Vector Angle Deg
Rule 251 - Heavy 232A1	0.0		.50 .00	.3	4.0	1.793 0.317	2.66 1.73	1577 430	0.07 0.02	2.67 1.73		2.35 1.73	28.1

.02A1	120.0 0.000 .00	.0 0.0	0.517 1.75	430	0.02	1.75 0.0	0 1.75 0.
			Temp	Midspan	Tension	% Length	Clearance
Span Le	ength = 137.00 ft		(F)	Sag (ft)	(lb)	Change	
Span Sa	ag = 1.37 ft (16.4 in)					-	
Span Te	ension = 543 lb		-40.0	.79	942	-0.02	N/A
M	ax Load = 6,650 lb		-30.0	.83	899	-0.02	N/A
	Usable load (60%) = 3,990	lb	-20.0	.87	857	-0.02	N/A
Catenar	ry Length = 137.037 ft		-10.0	.91	816	-0.01	N/A
Stress F	Free Length @		.0	.96	776	-0.01	N/A
Inst	alled Temperature = 136.95	5 ft	10.0	1.01	737	-0.01	N/A
			20.0	1.06	701	-0.01	N/A
	ed Strand		30.0	1.12	665	-0.01	N/A
	= .76 ft (9.1 in) 0.55 %		40.0	1.18	632	-0.01	N/A
Tens	ion = 374 lb		50.0	1.24	600	0.00	N/A
			60.0	1.30	570	0.00	N/A
			70.0	1.37	542	0.00	N/A
			80.0	1.44	517	0.00	N/A
			90.0	1.51	492	0.01	N/A
			100.0	1.58	470	0.01	N/A
			110.0	1.65	449	0.01	N/A
			120.0	1.73	430	0.02	N/A
			130.0	1.80	413	0.02	N/A
			140.0	1.87	397	0.02	N/A

E-144/115 - T-150/759(Existing joint owned utility pole (NHEC/Fairpoint) in existing Right-of-Way)

E-144/115 - T-150/759

E-144/114 - T-150/758(Existing joint owned utility pole (NHEC/Fairpoint) in existing Right-of-Way)

Construction Notes: NHOS proposes to install a ¼ inch metal supporting

strand between the existing utility poles shown above that will traverse the river. The strand will be installed at the proposed height (see above). The supporting strand will be secured to each pole using double dead end attachments to prevent any sag in the wire and maintain proper clearances. NHOS will lash a one inch diameter fiber optic cable (PVC jacket) to the strand using a dual lash method to provide security of the fiber over the right of way. The fiber will be tagged with twenty four hour contact information at each pole clamp. NHOS will employ the proper safety personnel during the crossing installation. The proposed install will meet all proper clearances from other Utilities. (see above). Additional pole guys will be added per NESC Rule 264 and as directed by pole

E-144/114 - T-150/758

New Hampshire Optical Systems, Inc. 99 Pine Hill Rd. Nashua, NH 03063 (603-821-6467)

Proposed **River Crossing** Moultonborough, NH

Notes:

- 1. The heights of structures shown hereon are based on field measurements taken with a Nikon 362 total station during a site survey on
- 2. The horizontal distance between the nearest bridge edge and the existing overhead wires is approximately 2'.
- Because of the close horizontal proximity to the existing bridge structure, the simplified drawing is submitted with vertical distances measured to the structure. This process simplifies the preparation and review of the crossing without jeopardizing its intent to protect the safe usage of the waterway
- The smallest vertical distance from the top of existing bridge deck to the lowest existing overhead wires is 18'.
- 5. The vertical distance between the top of water and bridge deck is approximately 17'.
- 6. Vertical distances are representative of attachment heights after utility make ready moves are completed.

Project # TID-177 - Primary 8

Proposed **River Crossing** Moultonborough, NH

Whittier Highway, Moultonborough, NE Nearest cross street- Sheridan Rd.

Sheet 2 of 2

